

6MCF200Nd

MID FREQUENCY TRANSDUCER
Preliminary Data Sheet

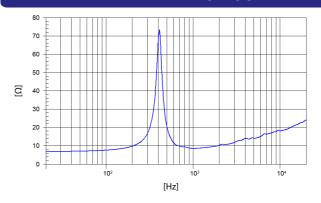
KEY FEATURES

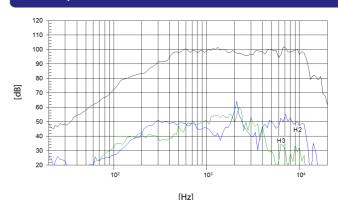
- · Very high efficiency mid-range driver
- Carbon fiber cone for optimum loading behaviour and low distortion
- Extremely linear frequency response
- 2" aluminium voice coil
- 400 W Program Power
- High efficiency and sensitivity
- FEA optimized neodymium motor structure
- Sealed cast aluminium frame
- Designed for high performance mid-frequency line array and horn loading applications

Nominal diameter	165 mm	6,5 in
Rated impedance	100 11111	8 Ω
Minimum impedance		8 Ω
Power capacity*	200	W _{AES}
Program power		400 W
Sensitivity	97 dB 1W / 1n	n @ Z _N
Frequency range	400 - 12.	000 Hz
Voice coil diameter	51,7 mm	2 in
BI factor	1	9,2 N/A
Moving mass	0	,016 kg
Voice coil length	,	9,2 mm
Air gap height		9 mm

THIELE-SMALL PARAMETERS**

Resonant frequency, f _s	410 Hz
D.C. Voice coil resistance, R _e	6,3 Ω
Mechanical Quality Factor, Q _{ms}	5,9
Electrical Quality Factor, Q _{es}	0,72
Total Quality Factor, Qts	0,64
Equivalent Air Volume to C _{ms} , V _{as}	0,25 l
Mechanical Compliance, C _{ms}	9 μm / N
Mechanical Resistance, R _{ms}	7,1 kg / s
Efficiency, η ₀	2,4 %
Effective Surface Area, S _d	0,014 m ²
Maximum Displacement, X _{max} ***	2,5 mm
Displacement Volume, V _d	35 cm ³
Voice Coil Inductance, Le @ 1 kHz	0,25 mH


Notes:


MOUNTING INFORMATION

Overall diameter	174 mm	6,85 in
Bolt circle diameter	158 mm	6,22 in
Baffle cutout diameter:		
- Front mount	146 mm	5,75 in
Depth	75 mm	2,95 in
Net weight	2,3 kg	5,07 lb
Shipping weight	2,7 kg	5,95 lb

FREE AIR IMPEDANCE CURVE

FREQUENCY RESPONSE & DISTORTION

Note: On axis frequency response measured with loudspeaker standing on infinite baffle in anechoic chamber, 1W @ 1m

^{*} The power capaticty is determined according to AES2-1984 (r2003) standard. Program power is defined as the transducer's ability to handle normal music program material.

^{**} T-S parameters are measured after an exercise period using a preconditioning power test. The measurements are carried out with a velocity-current laser transducer and will reflect the long term parameters (once the loudspeaker has been working for a short period of time).

^{***} The X_{max} is calculated as $(L_{vc} - H_{ag})/2 + (H_{ag}/3,5)$, where L_{vc} is the voice coil length and H_{ag} is the air gap height.